메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황재민 (국방대학교) 마정목 (국방대학교)
저널정보
(사)한국CDE학회 한국CDE학회 논문집 한국CDE학회 논문집 제27권 제2호
발행연도
2022.6
수록면
137 - 147 (11page)
DOI
10.7315/CDE.2022.137

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
With the recent development of Obstacle Clearance Tank (K-600) that can overcome minefield, rockfall and road crator, ROK Army can shorten the time required to overcome obstacles and increase operation efficiency. However, in order to overcome the lack of military service resources in the future and be guaranteed to survive operator, Unmanned Obstacle Clearance Tank should be introduced along with artificial intelligence technologies. In order to develop the Unmanned Obstacle Clearance Tank, the initial recognition stage is critical among “recognitioncontrol-action” stages. This study aims to build the obstacle recognition and classification model based on Google teachable machine and verify the model using the real RC-car camera test environment.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 딥러닝 기반 장애물 분류 모델
4. 장애물 분류모델 검증·결과 분석
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-001346520