메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hamza Khan (Pusan National University) Saad Jamshed Abbasi (Pusan National University) Muhammad Salman (Pusan National University) Min Cheol Lee (Pusan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
504 - 508 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this research, a virtual simulator (slave system) of an eight-degrees-of-freedom robot (two-DOF crane, one-DOF prismatic (telescopic mast), and five-DOF robot manipulator) is developed and teleoperated by an external hardware haptic device (master system) for nuclear power plant"s (NPP) reactor vessel internals (RVI) dismantling operations. For operations such as cutting, the robot end-effector with a laser cutter should maintain a constant distance from the physical wall of RVI. So, a virtual wall near the physical wall is assumed. The end-effector should remain on the virtual wall for optimal cutting which is achieved through force tracking impedance control. In this paper, initially sliding mode control (SMC) was implemented but resulted in chattering in force tracking response. Therefore, super twisting sliding mode control (STSMC)-based force tracking impedance control is designed and implemented for enhanced end-effector force tracking. The control input of the STSMC is composed of a continuous and discrete component. Continuous control input regulates control performance against uncertainties, whereas discrete provides a switching algorithm. STSMC then eliminates the chattering effect and reduces the force tracking error. The performance of SMC-based and STSMC-based impedance control is compared, and the comparison shows that the STSMC-based impedance control provides enhanced performance.

목차

Abstract
1. INTRODUCTION
2. MASTER-SLAVE SYSTEM
3. IMPEDANCE CONTROL
4. TELEOPERATION AND RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0