메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정혜연 (한국외국어대학교) 박헌일 (사이버한국외국어대학교) 우경조 (한국외국어대학교) 서수영 (한림대학교)
저널정보
한국외국어대학교 통번역연구소 통번역학연구 통번역학연구 제25권 제3호
발행연도
2021.8
수록면
141 - 162 (22page)
DOI
10.22844/its.2021.25.3.141

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper begins with the question. Is it possible that a machine can understand and evaluate the meaning of a text? Word2Vec is a neural network method of computing vector representations of words, which means the tool processes a text corpus and produces numeric vectors on the meanings of the words. This paper seeks to examine whether the automatic evaluation metrics, BLEUmodif and METEORmodif, enhanced by word2vec technology, are able to capture the meaning of translated texts better than their standard versions. To this end, first, five literary texts written in English were translated into Korean by 119 students. Then, these translations were evaluated by two professional translators/teachers and by five different automatic evaluation programs. These are standard versions of BLEU and METEOR as well as BLEUmodif and METEORmodif with the word2vec technology and finally Sent2Vec that computes sentence vector representations. For the sake of convenience, the last three systems are referred to as “embedding versions” in this study. The analysis shows that overall, the standard version of METEOR performed the best (grades: 0.838, ranking: 0.727), but at the level of individual texts, the embedding versions of BLEU and METEOR showed a higher correlation with human evaluation (four texts) than their standard versions (one text).

목차

등록된 정보가 없습니다.

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0