메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재숙 (광주여자대학교) 문소희 (광주여자대학교)
저널정보
한국인체미용예술학회 한국인체미용예술학회지 한국인체미용예술학회지 제22권 제4호
발행연도
2021.12
수록면
123 - 141 (19page)
DOI
http://doi.org/10.18693/jksba.2021.22.4.123

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to investigate the actual situation of no-shows in hairdressing salons and to find ways to reduce reservation defaults by studying the countermeasures against the loss of productivity due to no-shows (reservation defaults). Based on the results of this study, it was attempted to raise awareness of the damage caused by the reservation failure by deriving a study on the importance and damage of countermeasures against the failure of reservations in beauty salons. As a result of the research, it is expected that basic data can be utilized in the service industry in the beauty industry. Through this research result, various reservation failure cases and research results are combined to provide a countermeasure, which is a reservation service that meets and responds to the needs of users in the overall service. It is expected to contribute to improvement. As a suggestion, through additional research, it is necessary to understand the level of consumer awareness of reservation failure, improve reservation failure by suggesting ways to improve reservation failure in the future, and to establish a correct reservation culture for business operators. It is necessary to contribute to the improvement of the system related to the default of reservations by conducting a survey. Through this study, through the analysis of hair salons with the characteristics of the reservation industry, it is intended to provide basic data by deviating from the point of view of the existing consumer-centered research and identifying the damage cases at the supplier origin.

목차

등록된 정보가 없습니다.

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0