메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김영진 (한동대학교)
저널정보
한국무역연구원 무역연구 무역연구 제17권 제5호
발행연도
2021.10
수록면
75 - 89 (15page)
DOI
http://dx.doi.org/10.16980/jitc.17.5.202110.75

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose - The purpose of this paper is to study how to improve virtual group productivity by structuring group interaction processes with Computer-Mediated Communication System (CMCS). Design/Methodology/Approach - A laboratory experiment was designed, and research hypotheses were developed with group interaction modes, Parallel Interaction (PI) and Sequential Interaction (SI). Data to test the hypotheses were collected, and statistically analyzed with the General Linear Model. Findings - Group performance was significantly better in groups with parallel interaction (PI) for subjective decision quality and satisfaction with decision process, but objective decision quality was found to be not significant. Research Implications - As more group interaction moves to the virtual space, there is a need to better understand the behavior of virtual groups to more effectively support their interaction to improve performance. The study found that interaction procedures for virtual group can be designed in such a way to eliminate or minimize ill-effects of interaction inefficiencies by providing flexible CMCS-enabled structured interaction procedures and rules so that each group member participates in group interaction in his/her most preferable decision strategy. Based on the findings, this study calls for CMCS to develop more functionality such as automated leadership functionality or computerized structured interaction techniques as real-time online Delphi, with which groups can flexibly arrange interaction procedures that allow group members to contribute in their most preferable way.

목차

등록된 정보가 없습니다.

참고문헌 (59)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0