메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Seung Hee Lim (Hallym University College of Medicine) Min Jeong Kim (Hallym University College of Medicine) Won Hyuk Choi (Hallym University College of Medicine) Jin Cheol Cheong (Hallym University College of Medicine) Jong Wan Kim (Hallym University College of Medicine) Kyung Joo Lee (Kangdong Sacred Heart Hospital) Jun Ho Park (Hallym University College of Medicine)
저널정보
대한외과학회 Annals of Surgical Treatment and Research Annals of Surgical Treatment and Research Vol.105 No.4
발행연도
2023.10
수록면
237 - 244 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: Sepsis is one of the most common causes of death after surgery. Several conventional scoring systems have been developed to predict the outcome of sepsis; however, their predictive power is insufficient. The present study applies explainable machine-learning algorithms to improve the accuracy of predicting postoperative mortality in patients with sepsis caused by peritonitis.
Methods: We performed a retrospective analysis of data from demographic, clinical, and laboratory analyses, including the delta neutrophil index (DNI), WBC and neutrophil counts, and CRP level. Laboratory data were measured before surgery, 12-36 hours after surgery, and 60-84 hours after surgery. The primary study output was the probability of mortality. The areas under the receiver operating characteristic curves (AUCs) of several machine-learning algorithms using the Sequential Organ Failure Assessment (SOFA) and Simplified Acute Physiology Score (SAPS) 3 models were compared. ‘SHapley Additive exPlanations’ values were used to indicate the direction of the relationship between a variable and mortality.
Results: The CatBoost model yielded the highest AUC (0.933) for mortality compared to SAPS3 and SOFA (0.860 and 0.867, respectively). Increased DNI on day 3, septic shock, use of norepinephrine therapy, and increased international normalized ratio on day 3 had the greatest impact on the model’s prediction of mortality.
Conclusion: Machine-learning algorithms increase the accuracy of predicting postoperative mortality in patients with sepsis caused by peritonitis.

목차

INTRODUCTION
METHODS
RESULTS
DISCUSSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0