메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박재범 (Kangwon National University) 신소영 (Kangwon National University) 조현종 (Kangwon National University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제72권 제11호
발행연도
2023.11
수록면
1,406 - 1,411 (6page)
DOI
10.5370/KIEE.2023.72.11.1406

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Lung cancer ranked second in Korea domestic cancer incidence in 2020 and second in death rate. Lung cancer often has no early symptoms, so patients often miss the time of treatment. Accordingly, in Korea, lung cancer has been included in the national cancer screening since 2019. However, among misdiagnosis cases, lung cancer had the highest misdiagnosis rate, and the accuracy of screening may vary depending on the medical specialist"s skill level and fatigue. Accordingly, this paper proposed a lung cancer CADx(Computer-Aided Diagnosis) system based on EfficientNetV2-L and ConvNeXt-B. EfficientNetV2 is a model that can have high classification performance with a small number of parameters using the Training-Aware NAS (Neural Architecture Search) method. ConvNeXt is a network that achieves higher performance than ViT(Vision Transformer) by combining the latest techniques with ResNet-50 as a base model. Medical imaging generally suffers from a data shortage problem. Therefore, we augmented the lung cancer dataset using AutoAugment using the ImageNet augmentation policy. Through this method, the sensitivity in classifying malignant(lung cancer) and normal improved from 0.8354 to 0.9638 in EfficientNetV2 and from 0.9796 to 0.9963 in ConvNeXt. AUC (Area Under the ROC Curve) also improved from 0.9967 to 0.9974 for EfficientNetV2 and from 0.9973 to 1.0000 for ConvNeXt. Additionally, noise that may generally occur in CT images was added and compared through Gaussian noise. EfficientNetV2"s Sensitivity was 0.7417 in the original model and 0.8954 in the model to which AutoAugment was applied, representing a decrease of 9.37% and 6.84%, respectively. In contrast, ConvNeXt exhibited a Sensitivity of 0.9796 in the original model and 0.9963 in the model to which AutoAugment was applied, showing no decrease in performance. This led to the development of a CADx system that demonstrates excellent performance.

목차

Abstract
1. 서론
2. 본론
3. 연구결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0