메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김현숙 (가천대학교) 김애진 (가천대학교) 노한 (가천대학교) 장제현 (가천대학교) 이현희 (가천대학교) 정우경 (가천대학교) 정지용 (가천대학교)
저널정보
대한신장학회 Kidney Research and Clinical Practice Kidney Research and Clinical Practice Vol.42 No.2
발행연도
2023.3
수록면
262 - 271 (10page)
DOI
10.23876/j.krcp.22.059

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: T50 is a novel serum-based marker that assesses the propensity for calcification in serum. A shorter T50 indicates a greater propensity to calcify and has been associated with cardiovascular disease and mortality among patients with chronic kidney disease. The factors associated with T50 and the correlation between T50 and bone mineral density (BMD) are unknown in hemodialysis (HD) patients. Methods: This cross-sectional study included 184 patients undergoing HD. Individuals were grouped into tertiles of T50 to compare the demographic and disease indicators of the tertiles. Linear regression was used to evaluate the association between T50 and hip and spinal BMD in a multivariate model. Results: Mineral and inflammatory parameters, including serum phosphate (r = –0.156, p = 0.04), albumin (r = 0.289, p < 0.001), and high-sensitivity C-reactive protein (r = –0.224, p = 0.003) levels, were associated with T50. We found a weak association between T50 and BMD in the total hip area in the unadjusted model (β = 0.030, p = 0.04) but did not find a statistically significant association with the total hip (β = 0.017, p = 0.12), femoral neck (β = –0.001, p = 0.96), or spinal BMD (β = 0.019, p = 0.33) in multivariable-adjusted models. Conclusion: T50 was moderately associated with mineral and inflammatory parameters but did not conclusively establish an association with BMD in HD patients. Broad-scale future studies should determine whether T50 can provide insights into BMD beyond traditional risk factors in this population.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0