메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyung Il Lee (Hanyang University) Jong Woo Kim (Hanyang University)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第50卷 第1號
발행연도
2025.2
수록면
13 - 47 (35page)
DOI
10.7737/JKORMS.2025.50.1.013

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Extreme weather events due to climate change are increasing the risk of railway track buckling, which can lead to delays and safety issues such as derailments. Accurate prediction of rail temperature is therefore crucial for safe train operations. While advancements in technology have enabled real-time monitoring of rail temperatures, the current machine learning models used by KORAIL face limitations in accuracy and generalization. This study introduces an innovative method utilizing pre-trained large language models (LLMs) for efficient rail temperature prediction. We employ a simple data mapping technique using binning and normalization to convert time-series data into token sequences suitable for LLMs, allowing training and inference without modifying the model architecture. By applying a non-autoregressive inference approach, we address error accumulation and facilitate faster inference. Our model, trained on five years of data from 200 sensors, outperformed various baseline models achieving an RMSE of 1.8539℃, MAE of 1.0681℃, and R² of 0.9794. It also demonstrated strong generalization in zero-shot predictions for sensors not included in training. This approach offers a straightforward and efficient way to apply LLMs to time-series data, contributing to safer railway operations and maintenance planning.

목차

Abstract
1. Introduction
2. Literature Review
3. Methodology
4. Experiments
5. Conclusion and Future Work
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092491238