메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김선웅 (국민대학교) 안현철 (국민대학교)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제16권 제1호
발행연도
2010.3
수록면
71 - 92 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 트레이딩 시스템에 대한 관심이 높아지면서, 인공지능을 이용한 지능형 트레이딩 시스템의 개발과 관련한 연구들이 활발하게 이루어지고 있다. 그러나 현재까지 소개된 트레이딩 시스템 관련 연구들은 트레이딩에 적용될 수 있는 다양한 변수들이 실무에서 활용되고 있음에도 불구하고, 주가지수에서 파생된 기술적 지표에만 과도하게 의존하는 경향이 있었다. 또한, 실제 수익창출에 초점이 맞추어진 트레이딩 시스템의 모형보다는 주가 혹은 주가지수의 등락에 대한 정확한 예측에 초점을 맞춰 모형을 개발하려고 하는 한계도 존재했다. 이에 본 연구에서는 기존 연구에서 주로 활용되어 온 기술적 지표 외에 현업에서 유용하게 활용되는 다양한 비가격 변수들을 시스템에 반영함으로서 예측 성과의 개선을 도모하는 동시에, Support Vector Machines 기반의 등락예측모형의 결과를 트레이딩 시스템의 매수, 매도, 혹은 유지의 신호로 해석할 수 있도록 설계된 새로운 형태의 지능형 트레이딩 시스템을 제안한다. 제안시스템의 유용성을 검증하기 위해, 본 연구에서는 2004년 5월부터 2009년 12월까지의 KOSPI200 주가지수에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안시스템이 수익률 관점에서 다른 비교모형들에 비해 더 우수한 성과를 도출함을 확인할 수 있었다.

목차

1. 서론
2. 이론적 배경
3. 제안 시스템
4. 실험 설계
5. 실험 결과
6. 연구의 의의 및 한계점
참고문헌
Abstract
저자소개

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-003-003376076