메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
연구보고서
저자정보
Masataka SUZUKI (Meiji University) Eisuke TERADA (Meiji University) Teppei SAITOH (Meiji University) Yoji KURODA (Meiji University)
저널정보
대한전자공학회 대한전자공학회 기타 간행물 Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV) 2010
발행연도
2010.2
수록면
153 - 158 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper describes a far-range visual map building and traversability analysis using geometrical information and image appearance, which are observed by a stereo camera, for autonomous mobile robots. In this research, long-range polar map that has multiple resolution of the radius direction is introduced, in order to use far area of terrain classification data effectively that has an huge error that grows quadratically with range. The traversability analyzing approach that reduces the influence of observation noise and a classification error is proposed. In this approach, texture information is classified into traversable or not by Support Vector Machine to analyze from near to far area of traversability. Predictive probability of classification is calculated to reduce failure of terrain classification and traversability analysis. Simultaneously, accurate analysis of traversability near a robot is accomplished by estimating planes of each grid from point cloud. Finaly, our system was experimented in outdoor environment.

목차

Abstract
1. Introduction
2. Stereo Camera & Map Building
3. Terrain Analysis by Point Cloud
4. Terrain Classification by SVM
5. Experiments
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0