메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임하빈 (고려대학교) 김휘강 (고려대학교) 김승주 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제27권 제6호
발행연도
2017.12
수록면
1,431 - 1,439 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
보안 분야에서 악성코드나 이상 행위를 탐지하기 위한 보안 로그의 분석은 매우 중요하며, 악성코드를 탐지하기 위한 이미지 시각화 분석 기술은 많은 선행 연구를 통해 논의되어져 왔다. 이러한 분석 기술은 온라인 게임에도 적용될 수 있다. 최근 온라인 게임에서 악성코드나 게임 봇, 매크로 도구 등의 악용 사례가 증가하므로 인해 정상적으로 게임을 이용하려는 유저들의 이탈이 늘어나는 추세로 서비스의 운영자가 제시간에 필요한 조치를 하지 않을 경우 게임 산업 자체가 무너질 수 있다. 본 논문에서는 분석의 효율성을 향상시키기 위해 로그 파일을 PNG 이미지로 변환하는 방식을 사용한 새로운 이탈 예측 모델을 제안한다. 제안하는 모델은 이미지 변환을 통해 기존의 로그 크기에 비해 52,849배 경량화된 분석이 가능하며 특성 분석이 별도로 필요하지 않은 방식으로 분석에 소요되는 시간을 단축시켰다. 모델의 유효성 검증을 위해서 엔씨소프트의 블레이드 앤 소울 게임의 실제 데이터를 사용하였고, 분석 결과 97%의 높은 정확도로 잠재적인 이탈 유저를 예측할 수 있었다.

목차

요약
ABSTRACT
I. 서론
II. 관련연구
III. 이탈유저 탐지 모델
IV. 이탈유저 예측 모델의 성능 평가
V. 결론
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001716039