메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문금현 (숙명여자대학교)
저널정보
한국어문학회 어문학 語文學 第145輯
발행연도
2019.9
수록면
151 - 177 (27page)
DOI
10.37967/emh.2019.09.145.151

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The following study aims to investigate the principles and characteristics of newly-coined words with extreme expressions that were largely created vastly over the internet and have been used in recent years (2015~2018). According to grammatical particles, prefix derivatives (gae-, sship-, haek-, john- etc) and suffix derivatives are common (-chung, -nyeon, -nam etc), in terms of word types, there are a lot of native words, and there a lot of nouns for word classes. Regarding the meaning, most of them were about humans (figurative assessment of humans, conflict involving hatred between men and women, assessment of looks, emotional expressions of attitude and actions) and situations (positive situations, bad situations). Words with have negative meanings accounted for twice the number of those with positive meanings. Positive newly coined word meanings involved physical looks and something humorous, while negative newly coined words concerned looks hatred, unsolved disputes, and conflicts between men and women. There is also a strong characteristic in these newly-coined words that reflect the desire to continuously use stronger words that mean the same thing. A survey was conducted on how often these words are being used in daily life, and many had replied that they use newly-coined words that are easy to use rather than extreme words. It is predicted that newly-coined words that stress emotion or situations will settle into the language, where as unrealistic words that are not used often in daily life will disappear.

목차

1. 머리말
2. 선행연구
3. 인터넷 자료 분석
4. 고빈도 극한표현 신어의 특징
5. 극한표현 신어의 생성 원리와 사용 양상
6. 마무리
참고문헌
Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0