메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Bitnara (Department of Food Science and Biotechnology, Kyonggi University) Jeong, Do-Won (Department of Food Science and Biotechnology, Shinansan University) Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제58권 제5호
발행연도
2015.1
수록면
659 - 668 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A multilocus sequence typing (MLST) scheme was developed to evaluate the genetic diversity and background of Staphylococcus saprophyticus strains of food and clinical origins. A total of 48 isolates from human urine samples (21 isolates), Doenjang (9 isolates), Myeolchi-jeotgal (6 isolates), Saeu-jeotgal (3 isolates), and sausages (9 isolates) were subjected to MLST using internal fragments of 7 housekeeping genes: aroE, dnaJ, glpF, gmk, hsp60, mutS, and pta. MLST analysis resulted in 26 sequence types (STs), and the eBURST algorithm clustered the STs into 4 clonal groups (CGs) and 6 singletons. The predominant STs, ST11 (16.7 %, 8/48), and ST7 (10.4 %, 5/48), belonged to the major CG, CG1 (12 STs, 60.4 %, 29/48), and comprised isolates from Doenjang and urine. CG2 and CG3 comprised isolates from sausages, while CG4 included isolates from Myeolchi-jeotgal and Saeu-jeotgal. Twenty of the S. saprophyticus isolates exhibited resistance to erythromycin, lincomycin, or tetracycline. Lincomycin resistance was identified from the ST10-12 isolates, all of which are variants of ST08 and were isolated from Doenjang and human urine samples. This MLST scheme established the genetic diversity within S. saprophyticus, and clustering of the STs using eBURST revealed a correlation between the genetic backgrounds and the origins of isolates, and a link between genetic background and acquisition of lincomycin resistance.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0