메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준호 (한국외국어대학교 영어번역학)
저널정보
한국외국어대학교 통번역연구소 통번역학연구 통번역학연구 제23권 제1호
발행연도
2019.1
수록면
143 - 167 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Along with the development of Neural Machine Translation (NMT), it has been predicted that machine translation can be used for various text types. However, predictions without objectives and scientific data are unreliable and even misleading. Hence, this paper tries to present an objective assessment of the current state of NMT and to investigate whether NMT can be applicable to Korean-to-English literary translation. The starting point is to step back from conventional mistranslation-centric approaches and to accommodate the findings both from natural language processing research and translation studies, since machine translation research is multidisciplinary in its nature. To that end, this paper introduces the structural limitations of NMT engines which have already been reported by engineering scholars, and tries to prove the limitations which cause distortion of the original meaning and literary effect. To build an objective data set, the machine translation outcomes from two free on-line translation engines were used to translate four Korean novels. Three of them were compared against human translation, segment by segment, to underline the difference and shortcomings of machine translation. In addition, machine translation outcomes of one novel, without matching human translation, were used just for data validation. Among the many constraints of NMT, this paper selected and focused on unpredictable omission, difficulty in reading the context, long sentence processing, and out-of-vocabulary processing. After reviewing all these drawbacks, this paper makes some suggestions as to how we should view machine translation as a potential tool for future literary translation.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0