메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
임진 (이화여자대학교)
저널정보
대한언어학회 언어학 언어학 제32권 제3호
발행연도
2024.9
수록면
1 - 22 (22page)
DOI
10.24303/lakdoi.2024.32.3.1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper investigates the translation strategies employed in human and machine translations of Korean zero-subject sentences into English. The author translated 343 zero-subject segments from management forewords in business reports using Google Translate (NMT) and GPT-3.5 (LLM) and compared the results with quality human translation, seeking to investigate the patterns of three corpora’s translation strategies—subject restoration or structural modification. It was found that all three corpora-human translation (HT), NMT, and LLM translation-the dropped subject was most commonly replaced by personal pronouns rather than other nouns. Two statistically significant differences emerged among the corpora. First, HT exhibited a higher frequency of proper or general noun subjects, likely reflecting translators' efforts to avoid repetitive use of the first-person plural pronoun "we" in adjacent sentences. In contrast, NMT and LLM translations frequently adopted "we," leveraging it as a safe choice to enhance reader engagement in this genre. Second, NMT showed an overuse of short passive constructions without an agent, a choice underrepresented in LLM translations. While short passives can be effective when the subject is omitted in the source text, they may weaken the connection between action and agent, thereby altering the original discourse effect. This study contributes to the MT literature by expanding the scope to include genrespecific features, LLM translation tendencies, and particular translation challenges.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0