메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정희영 (서울여자대학교) 김현진 홍헬렌 (서울여자대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제29권 제5호
발행연도
2023.12
수록면
21 - 30 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
부분신장절제술 전 수술 계획을 세우기 위해서는 신장 종양의 위치, 형태 및 수술 시 안전 마진 파악이 중요하므로 신장 종양을 정확히 분할하는 것이 필요하다. 그러나 신장 종양은 환자마다 위치 및 크기가 다양하며 소장과 비장 같은 주변 장기와 형태와 밝기값이 유사하여 신장 종양을 분할하는 것에 어려움이 있다. 본 논문에서는 레이블이 있는 데이터와 없는 데이터를 함께 사용하는 준지도학습 방법 중 하나인 평균-교사모델을 활용하여 신장의 여러 위치에서 발생하는 작은 크기의 신장 종양을 분할하기 위해 신장 위치 정보를 가지는 신장 로컬 가이드 맵을 이용해 신장 종양에 집중하는 평균-교사 네트워크를 제안하고, 신장 종양의 크기에 따른 성능을 분석한다. 실험 결과, 제안 방법은 신장 주변에 존재하는 종양의 위치를 찾기 위해 신장 로컬 가이드 맵을 사용하여 신장의 국소 정보를 고려함으로써 75.24%의 F1-score를 보였다. 특히 분할이 어려운 작은 크기의 종양에 대한 과소분할을 개선하였으며 nnU-Net보다 적은 양의 레이블 데이터를 사용하여도 13.9% 높은 F1-score를 보였다.

목차

요약
Abstract
1. 서론
2. 제안 방법
3. 실험 및 결과
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088483214