메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Seunggyu Song (Kookmin University) Byeongho Yu (Korea Advanced Institute of Science and Technology) Minho Oh (Korea Advanced Institute of Science and Technology) Hyun Myung (Korea Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2023
발행연도
2023.10
수록면
184 - 188 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Legged robots are crucial in various applications, from search and rescue operations to exploration missions in challenging terrain. Accurate estimation of the robot’s state is paramount for achieving precise and reliable navigation. However, estimating the state of legged robots presents unique challenges due to inherent uncertainties, dynamics, and environmental interactions. We propose a novel state estimator for legged robots that leverages the ground plane to mitigate errors in the z-component of the state estimate especially. By exploiting the information provided by the effectively estimated ground plane, which serves as a reliable reference, the proposed estimator compensates for errors and enhances the accuracy of the estimated state. To validate the effectiveness of the proposed state estimator, real-world experiments are conducted on a legged robot platform. The results demonstrate significant improvements in state estimation accuracy, particularly in the z-component when compared with conventional state estimation methods. The proposed state estimator can potentially enhance the performance and autonomy of legged robots in various applications, including locomotion control, terrain mapping, and environment perception. Furthermore, its robustness and accuracy make it well-suited for scenarios where precise state estimation is crucial for safe and effective operation.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORKS
3. BIG-STEP
4. EXPERIMENTAL RESULT
5. CONCLUSION AND FUTUREWORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-088264102