메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
양지석 (광운대학교) 양근보 (광운대학교) 이정환 (광운대학교) 박철수 (광운대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
2,503 - 2,506 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
One of the most significant innovations in human history, the automobile has become central to modern transportation. However, for some individuals, purchasing a vehicle is neither economical nor practical, leading to the rise of car rental services as a key business sector. Rapid growth in tourism and travel industries has further accelerated this trend, drawing considerable attention from consumers. Nonetheless, users of these services face confusion due to fluctuating prices, and price prediction remains a crucial issue for providers. Accurate price prediction allows companies to distinguish between high and low demand periods, enabling appropriate discounting and price adjustments. Additionally, analyzing customer patterns can inform various promotional and marketing strategies. Thus, predicting rental car prices has emerged as an important issue. To address this, we propose a prediction model applying Large Language Models(LLM) algorithms. Traditional prediction algorithms rely on historical data and lack flexibility with diverse data types. To overcome these limitations, various LLM prediction models have been developed, notably Time-LLM algorithms based on prompt engineering, which show potential in addressing these challenges. This study aims to utilize the Time-LLM model to attempt both short-term and long-term predictions of rental car prices, and explore the applicability of LLM in the field of time series forecasting based on the results.

목차

Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 구현
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0