메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김은선 (중앙대학교) 강유진 (중앙대학교) 조윤식 (중앙대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2024년도 대한전자공학회 하계학술대회 논문집
발행연도
2024.6
수록면
3,456 - 3,460 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Large Language Models (LLMs), which trained on a larger corpus of dataset with huge number of parameters, outperform language models in general tasks. However, as LLMs are increasingly used across different fields, the risk of personal information leakage has increased. In this study, we explore the potential for privacy leakage posed by LLMs, specifically focusing on a Korean-specialized LLM. To analyze the patterns of personal information leakage, we fine-tuned Korean LLM on simulated Korean personal data. When prompted with personal information about a target individual, we find that the LLM partially matches the provided information and generates information that does not match the target but exists in the training dataset.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0