메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학위논문
저자정보

김건중 (전북대학교, 전북대학교 대학원)

지도교수
유기호
발행연도
2017
저작권
전북대학교 논문은 저작권에 의해 보호받습니다.

이용수34

표지
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
To fulfill success of the space mission, the traversability of lunar/planetary exploration rover is a key aspect of mission success. However, lunar surfaces are covered with loose regolith and has numerous steep slopes in certain area to be explored. So that achieving mobility and improving tractive performance of rover are indispensable and are also difficult problem. Also the wheel design and traction control for minimizing driving resistance/energy losses and maximizing tractive performance are required.
Chapter 2 describes the modeling of operation environment for lunar/planetary exploration rover. For lunar and planetary exploration rover, solar panels are promising candidate of power generation sources. The amount of obtained power depends on sun’s position such as solar altitude and azimuth angles. Thus, we considered the solar radiation condition for the modeling of operation environment and proposed conceptual design of exploration rover considering operation environment. Also, to identify the accurate terrain parameter in lunar simulant, two experimental methods were described. First, pressure-sinkage test was performed to identify the parameters of normal pressure and sinkage based on lunar simulant. And the terrain parameters concerning the shear stress are used the experimental data of Korea Institute of Civil Engineering and Building Technology. From the experimental data, the Levenberg-Marquardt method was utilized to derive the terrain parameters associated with normal and shear stresses.
Chapter 3 proposes the design and modeling for optimal shape of rover wheel. First, to design optimal shape of rover wheel and derive optimal driving conditions of rover based on operation environment, wheel-soil interaction model is described. Using this model and operation environment for lunar/planetary exploration rover, wheel design methodology provides optimal shape of rover wheel with limited power consumption.
The preliminary experiment of mobility performance for validating wheel-soil interaction model is presented in Chapter 4. For the evaluation of driving performance according to slip ratio and width of wheel in lunar simulant, we constructed a test bed of the rover wheel consists of the driving part of the rover wheel and sensing part of the various parameters. Using the test bed, the preliminary experiment of the sinkage, drawbar pull and tractive coefficient according to variation of the slip ratio and wheel width were carried out and evaluated. In addition, the experimental results were compared and discussed with the simulation results based on the wheel-soil interaction model.

목차

목 차 ⅰ
Abstract ⅲ
그림 목차 ⅵ
표 목차 ⅸ
제 1 장 서론 1
1.1 연구 배경 1
1.2 연구 목적 및 내용 8
제 2 장 운용환경 및 지형특성 분석 10
2.1 운용환경 요구사항 및 제약조건 10
2.2 획득 에너지 13
2.3 지형특성 분석 17
2.3.1 달 복제토 17
2.3.2 지형변수 예측 모델 19
2.3.2.1 압력-침하 상관관계 19
2.3.2.2 Mohr-Coulomb 모델 23
2.3.2.3 Janosi-Hanamoto 모델 25
2.3.3 지형변수 예측 실험 28
2.3.3.1 압력-침하 실험장치 및 결과 28
2.3.3.2 직접 전단 실험장치 및 결과 33
제 3 장 휠-지형 상호작용 모델링 및 휠 설계 36
3.1 휠-지형 상호작용 모델 36
3.1.1 슬립율 37
3.1.2 침하량 및 접촉각도 38
3.1.3 수직응력 40
3.1.4 전단응력 41
3.1.5 주행성능 관련 성능지표 43
3.2 휠 치수 설계 45
3.2.1 위도에 따른 획득 에너지 45
3.2.2 휠 치수 설계 조건 47
3.2.3 휠 치수 설계 결과 54
제 4 장 휠 테스트베드 기반 주행성능 평가 59
4.1 휠 테스트베드 59
4.1.1 시스템 구성 59
4.1.2 측정 오차 평가 63
4.2 주행성능 예비실험 및 평가 64
4.2.1 실험 목적 및 방법 64
4.2.2 주행성능 예비실험 69
4.2.3 휠-지형 상호작용 모델 검증 73
제 5 장 결론 76
참고 문헌 79

최근 본 자료

전체보기

댓글(0)

0