메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오민정 (조선대학교)
저널정보
한국경영학회 경영학연구 경영학연구 제48권 제2호
발행연도
2019.4
수록면
515 - 532 (18page)
DOI
10.17287/kmr.2019.48.2.515

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 연구는 23년간의 국내 DB에 게재된 국내저널을 중심으로 토픽모델링과 네트워크 분석을 활용해 기존의 고령연구에 대한 관심주제의 주요한 어구들을 발견해내고 이에 대한 빅데이터 분석을 통해 고령연구에 대한 경영학적 시사점을 제시하는데 연구 목적이 있다. 논문 제목에 ‘고령’의 단어를 포함하고 있는 사회과학연구 1291편의 논문을 추출하였으며, 토픽모델링 방법을 사용하여 연구 동향을 파악하였다. 토픽 모델링은 텍스트 본문에 있는 숨겨져 있는 의미를 파악하여 각개별연구의 범위를 줄이면서 전체적인 연구의 초점을 다양한 관점에서 파악할 수 있는 기법으로 인식되고 있다. 이러한 토픽 모델 분석을 통해 5개의 토픽을 확인할 수 있었고 각 토픽별 세부 관심주제를 통해 고령 연구동향과 연구흐름을 명료하게 확인할 수 있었다.
그동안 고령연구가 주로 미시적인 접근에 국한되었다면 본 연구는 보다 거시적인 관점에서 고령연구를 살펴보고 있으며, 논문의 숨겨진 구조를 파악할 수 있는 LDA(Latent Dirichlet Allocation) 접근 방법을 활용하고 있으며, 기존의 연구에서 명확히 확인할 수 없었던 핵심단어에 초점을 둘 수 있었다. 이를 통해 우리는 초록들이 어떤 비율로 어떤 주제를 다루는지 알 수 있었으며 주제의 비율을 통해 주제의 인기도와 흐름 역시 예측할 수 있었다. 또한 LDA분석의 가장 중요한 목적은 ‘연구’ 또는 ‘분석’과 같이 흔하지만 비유익한 명사구를 제거하면서도 중요한 명사구는 유지하는 방법이며 추출된 명사구의 TF-IDF(term frequency-inverse document frequency)를 계산하여 특정 초록에서 가장 많이 사용된 단어를 보여 준 후 빈도의 비율을 제시해주는 것이다. 그 결과 5개의 토픽별로 총 25개의 주요 명사구를 작성할 수 있었다. 이러한 결과를 통해 현재까지 고령연구의 흐름과 앞으로의 고령연구의 방향을 제시하면서 향후 고령에 관한 경영학적 연구에 시사점을 제시하고자 한다.

목차

Ⅰ. 서론
Ⅱ. 이론적 배경
Ⅲ. 연구방법
Ⅳ. 분석결과
Ⅴ. 결론 및 경영학 연구의 시사점
참고문헌
Abstract

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0