메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김소담 (연세대학교 정보대학원) 양성병 (경희대학교 경영대학 경영학과)
저널정보
한국IT서비스학회 한국IT서비스학회지 한국IT서비스학회지 제16권 제2호
발행연도
2017.1
수록면
139 - 156 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the global financial crisis of 2008, the continuous development and innovation in technology-related fields such as information and communications technology (ICT) are likely to swim against the recession. In this paradoxical situation, the necessity of financial innovation through ICT is on the rise. For this reason, the appearance of Fintech is more meaningful as a new converged industry with the potential to lead financial innovation. The term of Fintech is derived from combining 'Finance' and 'Technology.' In South Korea, one of the most popular types of Fintech is mobile payment. KakaoPay, which is the first mobile easy payment service in Korea, is a much more simplified type of mobile payment service than ones used in the past, and is provided by the most popular mobile messenger service in Korea, KakaoTalk. However, KakaoPay has few active users in spite of its many advantages, which include convenience, simplicity, and a powerful platform. Thus, the main purpose of this paper is to investigate influencing factors of user resistance on KakaoPay. In order to investigate specific factors, a research model is developed based on the unified understanding of user resistance put forth by Laumer and Eckhardt (2012). After gathering online survey data from KakaoTalk users, an empirical analysis is conducted to verify this research model. The results of this study give insights regarding user resistance factors in the Fintech sector, and by so doing, it is expected that the important factors of user resistance could help the diffusion of new services when new mobile payment services appear in the near future.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0