메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
함주혁 (한라대학교)
저널정보
대한조선학회 대한조선학회 논문집 대한조선학회논문집 제58권 제5호(통권 제239호)
발행연도
2021.10
수록면
281 - 293 (13page)
DOI
10.3744/SNAK.2021.58.5.281

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Oil and steel prices, which are major pricescosts in the shipbuilding industry, were predicted. Firstly, the error of the moving average line (N=3–5) was examined, and in all three error analyses, the moving average line (N=3) was small. Secondly, in the linear prediction of data through existing theory, oil prices rise slightly, and steel prices rise sharply, but in reality, linear prediction using existing data was not satisfactory. Thirdly, we identified the limitations of linear prediction methods and confirmed that oil and steel price prediction was somewhat similar to actual moving average line prediction methods. Due to the high volatility of major price flows, large errors were inevitable in the forecast section. Through the time series analysis method at the end of this paper, we were able to achieve not bad results in all analysis items relative to artificial intelligence (Prophet). Predictive data through predictive analysis using eight predictive models are expected to serve as a good research foundation for developing unique tools or establishing evaluation systems in the future. This study compares the basic settings of artificial intelligence programs with the results of core price prediction in the shipbuilding industry through time series prediction theory, and further studies the various hyper-parameters and event effects of Prophet in the future, leaving room for improvement of predictability.

목차

1. 서론
2. Prophet 개요
3. 데이터베이스 구축
4. 인공지능 해석 결과
5. 기존 이론을 통한 분석
6. 각 예측 모델을 통한 유가와 철강 가격 예측 종합
7. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-538-002081420