메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박철형 (국립부경대학교)
저널정보
한국해양비즈니스학회 해양비즈니스 해양비즈니스 제59호
발행연도
2024.8
수록면
25 - 44 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The purpose of this study is to establish a model for predicting the fluctuations of the frozen wholesale market prices of five major consumption fish species such as mackerel, hairtail, pollock, squid, and yellow corvina using five AI machine learning algorithms such as Decision Tree, Random Forest, Gradient-Boost, XG-Boost, and SVM, and to compare the predictive powers with each other using various forecasting indicators. The case of best prediction power was the prediction of the price of hairtail using a random forest, where the accuracy was 0.923, even more showing 100% precision, especially in the case of price decline. Among the five algorithms, the highest predictive power was SVM, with an average accuracy at 0.683, while the lowest one was XG-Boost, with an average accuracy at 0.614. When comparing the predictive powers of the algorithm for each individual fish species, Gradient-Boost and SVM were the best for mackerel, decision tree and random forest for hairtail, and random forest and XG-Boost for pollack. In addition, the decision trees was found to be the algorithms with the highest predictive power for squid, just like SVM was for yellow corvina.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0