메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Yae-Ji Kim (Kyungsung University) Hyun-Jeong Ban (Kyungsung University) Dong-Ho Kim (Hyejeon College) Hak-Seon Kim (Kyungsung University)
저널정보
한국조리학회 Culinary Science & Hospitality Research Culinary Science & Hospitality Research Vol.26 No.2(Wn.115)
발행연도
2020.2
수록면
36 - 44 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, the experience of airline lounge was analyzed through text mining of online review to provide marketing implications that could be used to establish sustainable strategy of airline lounge. Analyzing online review is an effective way to understand customer needs and to identify key attributes for customer satisfaction. The number of online reiviews extracted is 3,573. And those reviews were written from January 1<SUP>st</SUP> 2008 to March 31<SUP>st</SUP> 2019. This study conducted a semantic network analysis as part of text mining by collecting online reviews of airline lounge. According to the analysis, the top five frequent words are ‘food’, ‘staff’, ‘drink’, ‘selection" and ’busy’. Through a CONCOR (CONvergence of iterated CORrelation) analysis, keywords were divided into four clusters. Each cluster was named as ‘Physical environment’, "Brand’. ‘Service’, and "F&B’(Food & Beverage). The results enable a better understanding of customer’s experience in airline lounge. These findings suggest important implications with empirical evidence for building an effective marketing strategy based on deeper understanding of customers" experience of lounge areas. These are key elements in business mana gement throughout the airline industry.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. METHODOLOGY
4. RESULT
5. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-594-000454181