메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정윤희 (한국방송통신대학교) 이미남 (안산대학교) 이해영 (상지대학교)
저널정보
한국외식산업학회 한국외식산업학회지 한국외식산업학회지 제17권 제2호(통권 제51호)
발행연도
2021.6
수록면
201 - 217 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study sought to examine the consumption behavior of dried vegetables and the selection attributes considered in purchasing them. The survey was conducted on consumers who have bought and had dried vegetable products. It was conducted as a self-written survey using an online survey system. From December 10 to 16, 2019, the data was collected, and a total of 278 responses were used for analysis. Consumption behavior and selection attributes were analyzed according to gender and age. Based on our survey results, the number of responders who experienced purchasing dried vegetables by type of product was highest in leaf vegetables (179) and lowest in fruit vegetables (109). The consumption behavior of dried vegetable products showed significant differences between gender and age for main buyers in the home, eating uses, cooking methods, and information acquisition pathways (p<0.001, p<0.05, p<0.01). Among the selection attributes, it has been shown that women perceive texture, aroma, country of origin, additives, and processing methods as more important than men (p<0.01, p<0.05). Depending on the age group, people in their 50s considered the type, country of origin, and calories of the main attributes as the most important. They showed significant differences by age group (p<0.001, p<0.01). This study can used be in establishing marketing strategies for dried vegetable products by providing primary data for understanding consumers of dried vegetable products. In addition, it could be used in further studies to identify consumers of these products.

목차

Abstract
I. 서론
II. 이론적 배경
III. 연구방법
IV. 연구결과 및 고찰
V. 결론 및 제언
참고문헌

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0