메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문기범 (고려대학교) 김진원 (고려대학교) 이진숙 (고려대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제10호
발행연도
2021.10
수록면
1 - 10 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
학습관리 시스템(LMS)에 축적되는 로그 데이터는 학습 과정에 대한 양질의 정보를 제공한다. 지금까지 LMS 로그 데이터를 활용한 학업성취 예측 연구가 다양하게 수행되었지만, 상대적으로 적은 양의 학생 및 수업 데이터에 기반하고 있어 연구 결과 일반화 가능성에 한계가 존재한다. 본 연구는 대용량 LMS 로그 데이터를 이용해 대학생 학업성취를 조기예측하는 심층신경망 모델을 개발하고 성능을 검증했다. 이를 위해 가명화 처리된 LMS 로그 데이터 78,466,385건과 성적 데이터 165,846건을 활용했다. 그 결과, 본 연구에서 제안하는 예측모델은 우수학생 집단을 학기 초부터 높은 수준의 정확도로 예측하였다. 한편 보통 및 저성취 집단에 대한 예측 정확도는 제한적인 수준이었지만, 예측시점이 늦을수록 향상되었다. 본 연구의 결과는 순수 LMS 로그 데이터만을 이용해 실제로 활용할 수 있을 정도의 일반화 성능을 가진 심층신경망 기반 조기예측 모델을 구현했다는 의의가 있다.

목차

요약
Abstract
I. 서론
II. 방법
III. 결과
IV. 논의
참고문헌

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-310-002159725