메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김석철 (명지대학교 산업공학과) 강경식 (명지대학교 산업공학과)
저널정보
대한안전경영과학회 대한안전경영과학회지 대한안전경영과학회지 제19권 제3호
발행연도
2017.1
수록면
137 - 150 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Logistic enterprises want to be competitive enterprises in fierce logistic market and worry about the securement of discriminative competitiveness for it. The standards for the judgement of logistic industry's maintenance of competitiveness are not only economic feasibility of logistic costs but also the satisfaction of users because well-established service system for variety and enhancement of logistic needs. Some of the quality attributes sufficiently satisfy expectation of customers, but not guarantee high-quality satisfaction. Therefore, it's difficult to grasp quality attributes with the existing approach of perceived service quality. Quality attribute model suggested by Kano is widely used as the concept is accurate, there is high possibility to be used at the stage of product/service planning, and it can be easily applied. Kano model has a limitation that quality attributes are classified with mode and the differences between strong property of the quality attribute and week property in quality attributes were ignored. Therefore, Timko calculated customer satisfaction coefficient with the result of Kano's survey and effects of customer satisfaction and unsatisfaction through relations between satisfaction coefficient and unsatisfaction coefficient. The purposes of this study are to use ASC, the average of satisfaction coefficient and unsatisfaction, as the satisfaction of quality characteristics, decide the importance of quality characteristics with TOPSIS, a representative multi-standard decision-making method, and calculate strategy improvement propriety of logistic service quality.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0